Refinement

Refinement on F^{2}
$R(F)=0.040$
$w R\left(F^{2}\right)=0.091$
$S=1.024$
1699 reflections
178 parameters
All H atoms refined
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0482 P)^{2}\right.$
$+0.0374 \mathrm{P}]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.014$
$\Delta \rho_{\max }=0.169 \mathrm{e}^{-3}$
$\Delta \rho_{\text {min }}=-0.244 \mathrm{e}^{-3}$
Extinction correction: none
Scattering factors from International Tables for
Crystallography (Vol. C)

Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Motherwell, W. D. S. \& Clegg, W. (1978). PLUTO. Program for Plotting Molecular and Crystal Structures. University of Cambridge, England.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Table 1. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$

O1-C9	1.322 (3)	C3-C4	1.381 (3)
O1-H9	0.87 (3)	C3-H3	0.94 (2)
O2-C9	1.227 (3)	C4-C5	1.389 (3)
$\mathrm{O} 3-\mathrm{Nl}$	1.232 (2)	C4-N2	1.473 (3)
O4-N1	1.229 (2)	C5-C6	1.386 (3)
O5-N2	1.232 (2)	C5-H5	0.96 (2)
O6-N2	1.233 (2)	C6-H6	0.98 (2)
$\mathrm{C} 1-\mathrm{C} 2$	1.405 (3)	C7-C8	1.330 (3)
C1-C6	1.409 (3)	C7-H7	0.92 (2)
$\mathrm{Cl}-\mathrm{C} 7$	1.472 (3)	C8-C9	1.477 (3)
C2-C3	1.383 (3)	C8-H8	0.96 (2)
C2-N1	1.477 (3)		
C9-01-H9	109.1 (18)	C5-C6-H6	119.0 (14)
C2- $\mathrm{C} 1-\mathrm{C} 6$	116.5 (2)	C1-C6-H6	119.4 (14)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7$	124.5 (2)	C8-C7-C1	123.2 (2)
C6--C1-C7	119.0 (2)	C8-C7-H7	120.6 (13)
C3-C2-C1	123.4 (2)	$\mathrm{Cl}-\mathrm{C} 7-\mathrm{H} 7$	116.1 (13)
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1$	116.2 (2)	C7-C8-C9	120.2 (2)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	120.4 (2)	C7-C8-H8	122.5 (12)
C4-C3-C2	117.3 (2)	C9-C8- H 8	117.2 (12)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3$	121.6 (14)	O2-C9-O1	124.0 (2)
C2-C3-H3	121.1 (14)	O2-C9-C8	123.0 (2)
C3-C4-C5	122.6 (2)	O1-C9-C8	113.0 (2)
C3-C4-N2	118.3 (2)	$\mathrm{O} 4-\mathrm{N} 1-\mathrm{O} 3$	124.0 (2)
C5-C4-N2	119.0 (2)	$\mathrm{O} 4-\mathrm{N} 1-\mathrm{C} 2$	117.7 (2)
C6--C5-C4	118.6 (2)	O3-N1-C2	118.3 (2)
C6-C5-H5	122.4 (13)	O5-N2-06	124.2 (2)
C4-C5-H5	119.0 (13)	O5-N2-C4	117.6 (2)
C5-C6-Cl	121.6 (2)	O6-N2-C4	118.2 (2)

Data collection: Nicolet system software. Cell refinement: Nicolet system software. Data reduction: Nicolet system software. Program(s) used to solve structure: SHELXS86 (Sheldrick, 1985). Program(s) used to refine structure: SHELXL93 (Sheldrick, 1993). Molecular graphics: ORTEPII (Johnson, 1976) and PLUTO (Motherwell \& Clegg, 1978). Software used to prepare material for publication: SHELXL93.

VRT thanks the DAE for fellowship support. We thank Professor W. T. Robinson, University of Canterbury, Christchurch, New Zealand, for X-ray data collection.

[^0]
References

Desiraju, G. R. (1995). Angew. Chem. Int. Ed. Engl. 34, 2311-2327. Desiraju, G. R. \& Sharma, C. V. K. M. (1991). J. Chem. Soc. Chem. Commun. pp. 1239-1241.
some considerable theoretical interest (see, for example, Maitre et al., 1993).

Perspective views of the cation and borane anion of (I), showing the atomic numbering schemes, are given in Fig. 1. Both the cation and anion possess crystallographically-imposed C_{s} symmetry. Such mirror symmetry in this cation, rather than a C_{3}-type 'propeller' geometry, is not unprecedented; the same symmetry is found, for example, in the simple bromide salt of this cation (Bricklebank, Godfrey, McAuliffe \& Pritchard, 1993). The $\mathrm{Ph}_{3} \mathrm{PH}^{+}$moiety is otherwise structurally unremarkable.

Fig. 1. Perspective views of a whole cation (top) and a whole anion of (I) showing the atomic numbering scheme. Displacement ellipsoids are shown at the 40% probability level and H atoms are shown as small circles with artificial radii for clarity. [Symmetry code: (i) x, $\frac{3}{2}-y, z$.]

The atoms B1, B2 and B9 (and their terminal H atoms) lie on a crystallographic mirror plane, as does the endo-H11 atom (also bound to B9). Although peaks apparently corresponding to H11 and to the (facial) bridging H100 atom could readily be observed
in difference maps, the positions of these H atoms were not refined (see Experimental) and distances involving them are perhaps rather longer than may be reasonable [endo- $\mathrm{B} 9-\mathrm{H} 11$ 1.32, bridging $\mathrm{B} 7-\mathrm{H} 100$ 1.50 and $\mathrm{B} 8-\mathrm{H} 100 \quad 1.38 \AA$; cf. endo-B-H 1.13 and bridging B-H 1.19-1.38 \AA in the $\mathrm{Me}_{3} \mathrm{PH}^{+}$salt (Getman et al., 1988), where these H atoms were located]. Indeed, the identification of these atoms is far from certain. We found no evidence, however, of positional disorder in these (probably) facially bonded H atoms, or any B-atom disorder of the kind often seen in 11-vertex nido-carbaboranes (see, for example, Cowie, Donohoe, Douek \& Welch, 1993), where a partial B atom appears to 'cap' the open cluster face. Otherwise, the borane skeleton has a structure very similar to that found in its $\mathrm{Me}_{3} \mathrm{PH}^{+}$salt (Getman et al., 1988); BB distances around the open face are in the range 1.856 (6)-1.895 (8) \AA in (I) and 1.875 (6)-1.895 (6) \AA in the $\mathrm{Me}_{3} \mathrm{PH}^{+}$salt, while $\mathrm{B}-\mathrm{B}$ distances within the borane cage lie between 1.741 (8) and 1.780 (6) \AA in (I) and between 1.747 (6) and $1.775(6) \AA$ in the $\mathrm{Me}_{3} \mathrm{PH}^{+}$ salt. The structure of (I) is likewise similar to that determined for the $\left[\text { nido }-\mathrm{B}_{11} \mathrm{H}_{13}\right]^{2-}$ ion (Fritchie, 1967) and for the related species $\mathrm{Me}_{2} \mathrm{~S} . \mathrm{B}_{11} \mathrm{H}_{13}$ (Keller, Kester, Huffman \& Todd, 1993).

Experimental

The title salt $\left[\mathrm{Ph}_{3} \mathrm{PH}\right]\left[\right.$ nido $\left.-\mathrm{B}_{11} \mathrm{H}_{14}\right]$ was isolated (filtration and evaporation) from the reaction between equimolar amounts of $\mathrm{Na}\left[\right.$ nido- $\left.\mathrm{B}_{11} \mathrm{H}_{14}\right] . n \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Aftandilian et al., 1962; Miller \& Muetterties, 1967) and $\left[\mathrm{HgCl}_{2}\left(\mathrm{PPh}_{3}\right)\right]_{2}$ (Evans, Mann, Peiser \& Purdie, 1940) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Recrystallization was by slow diffusion of n-hexane into a dichloromethane solution at 243 K .

Crystal data

$\mathrm{C}_{18} \mathrm{H}_{16} \mathrm{P}^{+} . \mathrm{B}_{11} \mathrm{H}_{14}^{-}$
$M_{r}=396.30$
Monoclinic
$P 2_{1} / m$
$a=8.641$ (3) \AA
$b=13.064(2) \AA$
$c=10.945(3) \AA$
$\beta=106.861(2)^{\circ}$
$V=1182.5(6) \AA^{3}$
$Z=2$
$D_{x}=1.113 \mathrm{Mg} \mathrm{m}^{-3}$
D_{m} not measured

Data collection

Enraf-Nonius CAD-4 diffractometer
$\omega-2 \theta$ scans
Absorption correction: none 2326 measured reflections 2175 independent reflections 1334 reflections with $I>2 \sigma(I)$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$
Cell parameters from 25 reflections
$\theta=12-14^{\circ}$
$\mu=0.120 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block
$0.40 \times 0.30 \times 0.25 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.0207$
$\theta_{\text {max }}=24.97^{\circ}$
$h=0 \rightarrow 10$
$k=0 \rightarrow 15$
$l=-13 \rightarrow 12$
2 standard reflections every 250 reflections intensity decay: 0.3%

Refinement

Refinement on F^{2}
$R(F)=0.0594$
$w R\left(F^{2}\right)=0.1653$
$S=1.028$
2174 reflections
155 parameters
H atoms: see below
$w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.0888 P)^{2}\right]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.37 \mathrm{e}^{-3}$
$\Delta \rho_{\text {max }}=-0.28 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Scattering factors from International Tables for Crystallography (Vol. C)

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

$\mathrm{P}-\mathrm{Cl1}$	1.7722 (15)	B3-B4	1.763 (6)
$\mathrm{P}-\mathrm{C} 21$	1.777 (4)	B3-B8	1.780 (6)
$\mathrm{B} 1-\mathrm{B} 2$	1.741 (8)	B4-B8	1.758 (7)
B1-B3	1.758 (6)	B4-B9	1.764 (6)
B1-B4	1.763 (7)	B4-B4 ${ }^{1}$	1.776 (10)
B2-B3	1.751 (5)	B7-B8	1.856 (6)
B2-B7	1.761 (6)	B7-B7 ${ }^{\prime}$	1.895 (8)
B3-B7	1.751 (6)	B8--B9	1.883 (6)
C11-P-C11	112.5 (2)	B8-B4-B9	64.6 (3)
$\mathrm{C} 11-\mathrm{P}-\mathrm{C} 21$	110.29 (9)	$\mathrm{B} 1-\mathrm{B4}-\mathrm{B} 4^{\prime}$	59.8 (2)
B2-B1-B3	60.1 (2)	B9-B4-B4 ${ }^{1}$	59.8 (2)
B3-B1-B4	60.1 (2)	B3-B7-B2	59.8 (2)
$\mathrm{B} 4^{\prime}-\mathrm{B} 1-\mathrm{B} 4$	60.5 (4)	B3-B7-B8	59.0 (2)
B1-B2-B3	60.5 (2)	$\mathrm{B} 2-\mathrm{B} 7-\mathrm{B} 7^{\prime}$	57.4 (2)
B3-B2-B7	59.8 (2)	$\mathrm{B} 8-\mathrm{B} 7-\mathrm{B} 7^{\text {i }}$	107.4 (2)
$\mathrm{B} 7^{\mathrm{i}}-\mathrm{B} 2-\mathrm{B} 7$	65.1 (3)	$\mathrm{B} 4-\mathrm{B} 8-\mathrm{B} 3$	59.8 (2)
$\mathrm{B} 2-\mathrm{B} 3-\mathrm{B} 7$	60.4 (3)	B3-B8-B7	57.6 (2)
B2-B3-B1	59.5 (3)	B4-B8-B9	57.9 (3)
B1-B3--B4	60.1 (3)	$\mathrm{B} 7-\mathrm{B} 8-\mathrm{B} 9$	109.6 (3)
B7-B3-B8	63.4 (2)	B4-B9-B4 ${ }^{1}$	60.4 (4)
$\mathrm{B} 4-\mathrm{B} 3-\mathrm{B} 8$	59.5 (2)	B4-B9-B8	57.5 (2)
B8-B4-B3	60.7 (2)	B8'-B9-B8	105.9 (4)
B1-B4-B3	59.8 (2)		
Symmetry code: (i) $x, \frac{3}{2}-y, z$.			

The structure was solved by Patterson methods (SHELX76; Sheldrick, 1976) for the P atom and by difference Fourier syntheses (SHELXL93; Sheldrick, 1993) for B and C atoms, and for the phosphonium and borane H atoms. The C atoms of the wholly crystallographically-independent phenyl ring were constrained to be a rigid planar hexagon ($\mathrm{C}-\mathrm{C} 1.39 \AA$) and all phenyl H atoms were set riding in idealized positions (C-H $0.93 \AA$), with an isotropic displacement parameter equal to 1.5 times the equivalent isotropic displacement parameter of the corresponding C atom. Terminal borane H atoms were positionally refined subject to a common BH distance [1.15 (3) \AA at convergence]; the positions of the endo and bridging borane H atoms H 11 and H 100 were fixed after their location. [Attempts to refine the positions of H1I and H 100 were unsuccessful, resulting in their migration to chemically non-sensible positions away from the borane face (with $\mathrm{B} \cdots \mathrm{H}>2 \AA$) and the reappearance of electron-density peaks in the difference Fourier map close to the original apparent positions of these atoms.] The parameters of the phosphonium H atom were successfully refined to a final P H distance of 1.37 (4) \AA. All non- H atoms were ultimately refined with anisotropic displacement parameters; all nonphenyl H atoms were assigned a common (refined) isotropic displacement parameter [$U_{\text {iso }}=0.081$ (4) \AA^{2} at convergence].

Data collection: CAD-4 Software (Enraf-Nonius, 1989). Cell refinement: CAD-4 Software. Data reduction: CADABS (Gould \& Smith, 1986). Program used to refine structure: SHELXL93. Molecular graphics: ORTEX (McArdle, 1994).

The authors thank the EPSRC for support (TDM) and the Callery Chemical Company for a generous gift of decaborane.

Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: MU1262). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Aftandilian, V. D., Miller, H. C., Parshall, G. W. \& Muetterties, E. L. (1962). Inorg. Chem. 1, 734-737.

Bricklebank, N., Godfrey, S. M., McAuliffe, C. A. \& Pritchard, R. G. (1993). Acta Cryst. C49, 1017-1018.

Cowie, J., Donohoe, D. J., Douek, N. L. \& Welch, A. J. (1993). Acta Cryst. C49, 710-714.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Evans, R. C., Mann, F. G., Peiser, H. S. \& Purdie, D. (1940). J. Chem. Soc. pp. 1209-1230.
Fritchie, C. J. (1967). Inorg. Chem. 6, 1199-1203.
Getman, T. D., Krause, J. A. \& Shore, S. G. (1988). Inorg. Chem. 27, 2398-2399.
Gould, R. O. \& Smith, D. E. (1986). CADABS. Program for Data Reduction. University of Edinburgh, Scotland.
Keller, D. L., Kester, J. G., Huffman, J. C. \& Todd, L. J. (1993). Inorg. Chem. 32, 5067-5070.
McArdle, P. (1994). J. Appl. Cryst. 27, 438-439.
Maitre, P., Eisenstein, O., Michos, D., Luo, X.-L., Siedle, A. R., Wisnieski, L., Zilm, K. W. \& Crabtree, R. H. (1993). J. Am. Chem. Soc. 115, 7747-7751.
Miller, H. C. \& Muetterties, E. L. (1967). Inorg. Synth. 10, 81-91.
Sheldrick, G. M. (1976). SHELX76. Program for Crystal Structure Determination. University of Cambridge, England.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1997). C53, 231-234

Tetrakis(p-dimethylaminophenyl)ethylene Hemibenzene Solvate

Christian Näther and Hans Bock
Institut für Anorganische Chemie der Universität Frankfurt, Marie-Curie-Str. 11, 60439 Frankfurt/Main, Germany.
E-mail: chris@bock.anorg.chemie.uni-frankfurt.de

(Received 24 July 1996; accepted 7 October 1996)

Abstract

The crystal structure of the title compound, ethylene-tetrayltetrakis[dimethyl(4-phenyl)amine] hemibenzene solvate, $\mathrm{C}_{34} \mathrm{H}_{40} \mathrm{~N}_{4} .0 .5 \mathrm{C}_{6} \mathrm{H}_{6}$, has been determined by X-ray diffraction at 200 K . The molecular halves of the tetrasubstituted ethylene subunit are twisted by $12.0(2)^{\circ}$

[^0]: Lists of structure factors, anisotropic displacement parameters, atomic coordinates and complete geometry have been deposited with the IUCr (Reference: BK1250). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CHl 2HU, England.

